
A variable is a way to store data in the computer’s memory to
be used later in the program. C# is a type-safe language,
meaning that when variables are declared it is necessary to
define their data type.
Declaring the types of variables allows the compiler to stop the
program from being run when variables are used incorrectly, i.e,
an int being used when a string is needed or vice versa.

string foo = "Hello";

string bar = "How are you?";

int x = 5;

Console.WriteLine(foo);

// Prints: Hello

Math.Sqrt() is a Math class method which is used to calculate
the square root of the specified value. double x = 81;

Console.Write(Math.Sqrt(x));

// Prints: 9

Arithmetic operators are used to modify numerical values:
int result;

result = 10 + 5; // 15

result = 10 - 5; // 5

result = 10 * 5; // 50

result = 10 / 5; // 2

result = 10 % 5; // 0

Operators can be combined to create shorter statements and
quickly modify existing variables. Two common examples: int a = 10;

a++;

Console.WriteLine(a);

// Prints: 11

Cheatsheets / Learn C#

Data Types and Variables
Variables and Types

Math.Sqrt()

Arithmetic Operators

Unary Operator

+ addition operator

- subtraction operator

* multiplication operator

/ division operator

% modulo operator (returns the remainder)

++ operator increments a value.

-- operator decrements a value.

https://www.codecademy.com/resources/cheatsheets/all
https://www.codecademy.com/learn/learn-c-sharp/modules/csharp-hello-world/cheatsheet

Math.Pow() is a Math class method that is used to raise a
number to a specified power. It returns a number of double
type.

 double pow_ab = Math.Pow(6, 2);

Console.WriteLine(pow_ab);

// Prints: 36

In C#, .ToUpper() is a string method that converts every
character in a string to uppercase. If a character does not have
an uppercase equivalent, it remains unchanged. For example,
special symbols remain unchanged.

string str2 = "This is C# Program xsdd_$#%";

// string converted to Upper case
string upperstr2 = str2.ToUpper();

//upperstr2 contains "THIS IS C# PROGRAM
XSDD_$#%"

In C#, the IndexOf() method is a string method used to find
the index position of a specified character in a string. The
method returns -1 if the character isn’t found.

string str = "Divyesh";

// Finding the index of character
// which is present in string and
// this will show the value 5
int index1 = str.IndexOf('s');

Console.WriteLine("The Index Value of
character 's' is " + index1);
//The Index Value of character 's' is 5

Strings contain characters. One way these char values can be
accessed is with bracket notation. We can even store these
chars in separate variables.
We access a specific character by using the square brackets on
the string, putting the index position of the desired character
between the brackets. For example, to get the first character,
you can specify variable[0] . To get the last character, you can
subtract one from the length of the string.

// Get values from this string.
string value = "Dot Net Perls";

//variable first contains letter D
char first = value[0];

//Second contains letter o
char second = value[1];

//last contains letter s
char last = value[value.Length - 1];

Math.Pow()

.toUpper() in C#

IndexOf() in C#

Bracket Notation

In C#, an escape sequence refers to a combination of
characters beginning with a back slash \ followed by letters or
digits. It’s used to make sure that the program reads certain
characters as part of a string. For example, it can be used to
include quotation marks within a string that you would like to
print to console. Escape sequences can do other things using
specific characters. \n is used to create a new line.

In C#, Substring() is a string method used to retrieve part of a
string while keeping the original data intact. The substring that
you retrieve can be stored in a variable for use elsewhere in
your program.

string myString = "Divyesh";

string test1 = myString.Substring(2);

Concatenation is the process of appending one string to the
end of another string. The simplest method of adding two
strings in C# is using the + operator.

// Declare strings

string firstName = "Divyesh";

string lastName = "Goardnan";

// Concatenate two string variables

string name = firstName + " " + lastName;

Console.WriteLine(name);

//Ths code will output Divyesh Goardnan

In C#, .ToLower() is a string method that converts every
character to lowercase. If a character does not have a
lowercase equivalent, it remains unchanged. For example,
special symbols remain unchanged.

string mixedCase = "This is a MIXED case
string.";

// Call ToLower instance method, which returns
a new copy.

string lower = mixedCase.ToLower();

//variable lower contains "this is a mixed
case string."

The string class has a Length property, which returns the
number of characters in the string. string a = "One example";

Console.WriteLine("LENGTH: " + a.Length);

// This code outputs 11

Escape Character Sequences in C#

Substring() in C#

String Concatenation in C#

.ToLower() in C#

String Length in C#

String interpolation provides a more readable and convenient
syntax to create formatted strings. It allows us to insert variable
values and expressions in the middle of a string so that we don’t
have to worry about punctuation or spaces.

int id = 100

// We can use an expression with a string
interpolation.
string multipliedNumber = $"The multiplied ID
is {id * 10}.";

Console.WriteLine(multipliedNumber);
// This code would output "The multiplied ID
is 1000."

The character combination \n represents a newline character
when inside a C# string .
For example passing "Hello\nWorld" to Console.WriteLine()

would print Hello and World on separate lines in the console.

Console.WriteLine("Hello\nWorld");

// The console output will look like:
// Hello
// World

Comments are bits of text that are not executed. These lines
can be used to leave notes and increase the readability of the
program.

// This is a single line comment

/* This is a multi-line comment
 and continues until the end
 of comment symbol is reached */

The Console.ReadLine() method is used to get user input. The
user input can be stored in a variable. This method can also be

used to prompt the user to press enterenter on the keyboard.

Console.WriteLine("Enter your name: ");

name = Console.ReadLine();

The Console.WriteLine() method is used to print text to the
console. It can also be used to print other data types and values
stored in variables.

Console.WriteLine("Hello, world!");

// Prints: Hello, world!

String Interpolation in C#

String New-Line

Comments

Console.ReadLine()

Console.WriteLine()

Single line comments are created with two forward
slashes // .

Multi-line comments start with /* and end with */ .
They are useful for commenting out large blocks of code.

