
A variable is a way to store data in the computer’s memory to
be used later in the program. C# is a type-safe language,
meaning that when variables are declared it is necessary to
de�ne their data type.
Declaring the types of variables allows the compiler to stop the
program from being run when variables are used incorrectly, i.e,
an int being used when a string is needed or vice versa.

string foo = "Hello";
 string bar = "How are you?";

 int x = 5;

 Console.WriteLine(foo);
 // Prints: Hello

Math.Sqrt() is a Math class method which is used to calculate
the square root of the speci�ed value. double x = 81;

 Console.Write(Math.Sqrt(x));

 // Prints: 9

Arithmetic operators are used to modify numerical values:
int result;

 result = 10 + 5; // 15

 result = 10 - 5; // 5

 result = 10 * 5; // 50

 result = 10 / 5; // 2

 result = 10 % 5; // 0

Operators can be combined to create shorter statements and
quickly modify existing variables. Two common examples: int a = 10;

 a++;

 Console.WriteLine(a);
 // Prints: 11

Cheatsheets / Learn C#

Data Types and Variables
Variables and Types

Math.Sqrt()

Arithmetic Operators

Unary Operator

+ addition operator

- subtraction operator

* multiplication operator

/ division operator

% modulo operator (returns the remainder)

++ operator increments a value.

-- operator decrements a value.

https://www.codecademy.com/resources/cheatsheets/all
https://www.codecademy.com/learn/learn-c-sharp/modules/csharp-hello-world/cheatsheet

Math.Pow() is a Math class method that is used to raise a
number to a speci�ed power. It returns a number of double
type.

 double pow_ab = Math.Pow(6, 2);

Console.WriteLine(pow_ab);

// Prints: 36

In C#, .ToUpper() is a string method that converts every
character in a string to uppercase. If a character does not have
an uppercase equivalent, it remains unchanged. For example,
special symbols remain unchanged.

string str2 = "This is C# Program xsdd_$#%";

// string converted to Upper case
string upperstr2 = str2.ToUpper();

//upperstr2 contains "THIS IS C# PROGRAM
XSDD_$#%"

In C#, the IndexOf() method is a string method used to �nd
the index position of a speci�ed character in a string. The
method returns -1 if the character isn’t found.

string str = "Divyesh";

// Finding the index of character
// which is present in string and
// this will show the value 5
int index1 = str.IndexOf('s');

Console.WriteLine("The Index Value of
character 's' is " + index1);
//The Index Value of character 's' is 5

Strings contain characters. One way these char values can be
accessed is with bracket notation. We can even store these
chars in separate variables.
We access a speci�c character by using the square brackets on
the string, putting the index position of the desired character
between the brackets. For example, to get the �rst character,
you can specify variable[0] . To get the last character, you can
subtract one from the length of the string.

// Get values from this string.
string value = "Dot Net Perls";

//variable first contains letter D
char first = value[0];

//Second contains letter o
char second = value[1];

//last contains letter s
char last = value[value.Length - 1];

Math.Pow()

.toUpper() in C#

IndexOf() in C#

Bracket Notation

In C#, an escape sequence refers to a combination of
characters beginning with a back slash \ followed by letters or
digits. It’s used to make sure that the program reads certain
characters as part of a string. For example, it can be used to
include quotation marks within a string that you would like to
print to console. Escape sequences can do other things using
speci�c characters. \n is used to create a new line.

In C#, Substring() is a string method used to retrieve part of a
string while keeping the original data intact. The substring that
you retrieve can be stored in a variable for use elsewhere in
your program.

string myString = "Divyesh";
 string test1 = myString.Substring(2);

Concatenation is the process of appending one string to the
end of another string. The simplest method of adding two
strings in C# is using the + operator.

// Declare strings
 string firstName = "Divyesh";

 string lastName = "Goardnan";

 // Concatenate two string variables
 string name = firstName + " " + lastName;

 Console.WriteLine(name);
 //Ths code will output Divyesh Goardnan

In C#, .ToLower() is a string method that converts every
character to lowercase. If a character does not have a
lowercase equivalent, it remains unchanged. For example,
special symbols remain unchanged.

string mixedCase = "This is a MIXED case
string.";

 // Call ToLower instance method, which returns
a new copy.

 string lower = mixedCase.ToLower();

 //variable lower contains "this is a mixed
case string."

The string class has a Length property, which returns the
number of characters in the string. string a = "One example";

 Console.WriteLine("LENGTH: " + a.Length);
 // This code outputs 11

Escape Character Sequences in C#

Substring() in C#

String Concatenation in C#

.ToLower() in C#

String Length in C#

String interpolation provides a more readable and convenient
syntax to create formatted strings. It allows us to insert variable
values and expressions in the middle of a string so that we don’t
have to worry about punctuation or spaces.

int id = 100

// We can use an expression with a string
interpolation.
string multipliedNumber = $"The multiplied ID
is {id * 10}.";

Console.WriteLine(multipliedNumber);
// This code would output "The multiplied ID
is 1000."

The character combination \n represents a newline character
when inside a C# string .
For example passing "Hello\nWorld" to Console.WriteLine()

would print Hello and World on separate lines in the console.

Console.WriteLine("Hello\nWorld");

// The console output will look like:
// Hello
// World

Comments are bits of text that are not executed. These lines
can be used to leave notes and increase the readability of the
program.

// This is a single line comment

/* This is a multi-line comment
 and continues until the end
 of comment symbol is reached */

The Console.ReadLine() method is used to get user input. The
user input can be stored in a variable. This method can also be

used to prompt the user to press enterenter on the keyboard.

Console.WriteLine("Enter your name: ");

 name = Console.ReadLine();

The Console.WriteLine() method is used to print text to the
console. It can also be used to print other data types and values
stored in variables.

Console.WriteLine("Hello, world!");

 // Prints: Hello, world!

String Interpolation in C#

String New-Line

Comments

Console.ReadLine()

Console.WriteLine()

Single line comments are created with two forward
slashes // .

Multi-line comments start with /* and end with */ .
They are useful for commenting out large blocks of code.

